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| Pipeline with intermediate injections and deliveries

A pipeline in which gas enters at the beginning of the pipeline and the same volume exits at the end of
the pipeline is a pipeline with no intermediate injection or deliveries. When portions of the inlet volume
are delivered at various points along the pipeline and the remaining volume is delivered at the end of
the pipeline, we call this system a pipeline with intermediate delivery points. A more complex case with
gas flow into the pipeline (injection) at various points along its length combined with deliveries at other
points is shown in Figure 3.1. In such a pipeline system, the pressure required at the beginning point A
will be calculated by considering the pipeline broken into segments AB, BC, etc.

100 MMSCFD 80 MMSCFD 50 MMSCFD 90 MMSCFD
—_— —_— — -_—
A NPS 16 B c E D
20 MMSCFD 30 MMSCFD 40 MMSCFD

Figure 3.1 Pipeline with injecticn and deliveries.
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Problem

Example 2

A 150 mi long natural gas pipeline consists of several injections and deliveries as shown in Figure
below. The pipeline is NPS 20, has 0.500 in. wall thickness, and has an inlet volume of 250 MMSCEFD.
At points B (milepost 20) and C (milepost 80), 50 MMSCFD and 70 MMSCFD, respectively, are
delivered. At D (milepost 100), gas enters the pipeline at 60 MMSCFD. All streams of gas may be
assumed to have a specific gravity of 0.65 and a viscosity of 8.0 x 107 |b/ft-s. The pipe is internally
coated (to reduce friction), resulting in an absolute roughness of 150 p in. Assume a constant gas flow
temperature of 60°F and base pressure and base temperature of 14.7 psia and 60°F, respectively. Use
a constant compressibility factor of 0.85 throughout. Neglect elevation differences along the pipeline.

a) Using the AGA equation, calculate the pressures along the pipeline at points A, B, C, and D for a
minimum delivery pressure of 300 psig at the terminus E. Assume a drag factor = 0.96.

b) What diameter pipe will be required for section DE if the required delivery pressure at E is
increased to 500 psig? The inlet pressure at A remains the same as calculated above.

250 MMSCFD 200 MMSCFD 130 MMSCFD 190 MMSCFD
— — — —
A B C D E
NPS 20 _
0.500 in. wall 300 psig
50 MMSCFD 70 MMSCFD 60 MMSCFD
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Solution:

(a)

We will start calculations beginning with the last segment DE.
Pipe inside diameter D = 20 — 2 x 0.500 = 19.00 in.

The flow rate in pipe DE is 190 MMSCFD.

Using Equation 2.34, the Reynolds number is

R= 0.0004778{

14.7 \[ 0.65%x190x10°
520 8x10° %19

} = 10,974,469

Next, calculate the two transmission factors required per AGA.

1) The fully turbulent transmission factor, using Equation 2.48, is

3.7x19
F=4log | ————|=22.68
”’[150:&104}

L-4 T-1, Dept. of ME

250 MMSCFD 200 MMSCFD 130 MMSCFD 190 MMSCFD
— — — —
A B C D E
NPS 20 _
0.500 in. wall 300 psig
50 MMSCFD 70 MMSCFD 60 MMSCFD
P G .
Re = 0.00047?8[?" _,[Q) (USCS units) (2.34)
u
B i

D =20-2x0.5=19in.

For the fully turbulent zone, AGA recommends using the following formula for F,

based on relative roughness ¢/D and independent of the Reynolds number:

F=4log, ( 3.7D ] (2.48)
€
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2) The smooth pipe zone Von Karman transmission factor, using Equation 2.50, is

250 MMSCFD 200 MMSCFD 130 MMSCFD 190 MMSCFD

C D E
NPS 20 _
0.500 in. wall 300 psig
50 MMSCFD 70 MMSCFD 60 MMSCFD

F =dLog,, 10,974,469 _ 0.6
F
t
Solving for F, by iteration, we get
F,=22.18

Therefore, for a partly turbulent flow zone, the transmission factor, using

Equation 2.49, is
( 10,974,469 J 2120 /

F=4x0.96Log

1.4125%22.18 )

For the partially turbulent zone, F' is calculated from the following equations
using the Reynolds number, a parameter D, known as the pipe drag factor, and the
Von Karman smooth pipe transmission factor F:

Re
F=4D log - 2.49
s 0‘”“[1.41255} (=4
and
F, =4L0g10£&J—0.6 (2.50)
F
where

F, = Von Karman smooth pipe transmission factor
D; = pipe drag factor that depends on the Bend Index (BI) of the pipe

Using the smaller of the two values, the AGA transmission factor is

F=21.29
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250 MMSCFD 200 MMSCFD 130 MMSCFD 190 MMSCFD
—_— —_— —> —_—

A B NPS 20 C D E .
Next, we use General Flow Equation 2.4 to calculate the upstream pressure P; at D, | 0.500 in. wal ‘ ‘ Hopee
based on a given downstream pressure of 300 psig at E. 50 MMSCFD 70MMSCFD 60 MMSCFD
520 P*—314.7 ”
190x10° =38.77%21.29 e 19% O\ pp2 )™
14,77 )| 0.65x520x50x0.85 0= 38_77]7[3’](12J D> (USCS units) (2.4)
P, )\ GT,1Z

Solving for P,, we get the pressure at D as

P, =587.11 psia = 57241 psig (P )

Next, we consider the pipe segment CD, which has a flow rate of 130 MMSCFD.
We calculate the pressure at C using the downstream pressure at D calculated

above.

To simplify calculation, we will use the same AGA transmission factor we calculated
for segment DE. A more nearly correct solution will be to calculate the Reynolds
number and the two transmission factors as we did for the segment DE. However,

for simplicity, we will use F = 21.29 for all pipe segments.
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Applying General Flow Equation 2.4, we calculate the pressure P, at C as follows:

P?—587.11°
0.65x520x20x 0.85

130x10° =38.77x21.29 220
14.7

0.5
1 (19.0)>°

Solving for P, we get the pressure at C as

P, =0625.06 psia=0610.36 psig (PC)

Similarly, we calculate the pressure at B, considering the pipe segment BC that flows
200 MMSCED.

0.5
P?—625.06°
200x 105 = 38.77x 21.29| 222 ! (19.0)**
14.7 ]| 0.65x520x60x0.85
Solving for P,, we get the pressure at B as
P, = 846.95 psia = 832.25 psig (PB)
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250 MMSCFD
—_—

A B C D E
NPS 20 _
0.500 in. wall 300 psig

50 MMSCFD

200 MMSCFD
—>

130 MMSCFD
—_—

190 MMSCFD
—_—

70 MMSCFD 60 MMSCFD
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Finally, for pipe segment AB that flows 250 MMSCFD, we calculate the pressure P,
at A as follows:

P? —846.95°
0.65x 520 x 20 % 0.85

250x10%=38.77%x21.29 >20
14.7

0.5
J (19.0)*°

Solving for P,, we get the pressure at A as

P, = 942.04 psia = 927.34 psig  (P,)

© Dr. A.B.M. Toufique Hasan (BUET) L-4 T-1, Dept. of ME

250 MMSCFD 200 MMSCFD 130 MMSCFD 190 MMSCFD
—_— —_— —_— —_—
A B C D E
NPS 20 _
0.500 in. wall 300 psig
50 MMSCFD 70 MMSCFD 60 MMSCFD
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(b)

If we maintain the same inlet pressure, 927.34 psig, at A and increase the delivery
pressure at E to 500 psig, we can determine the pipe diameter required for section DE
by considering the same upstream pressure of 572.41 psig at D, as we calculated

before.

Therefore, for segment DE,

Upstream pressure P, = 572.41 + 14.7 = 587.11 psia

Downstream pressure P, = 500 + 14.7 = 514.7 psia

© Dr. A.B.M. Toufique Hasan (BUET)
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250 MMSCFD 200 MMSCFD 130 MMSCFD 190 MMSCFD

A B C D E
NPS 20 _
0.500 in. wall 300 psig
50 MMSCFD 70 MMSCFD 60 MMSCFD
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Using General Flow Equation 2.4, with the same AGA transmission factor as before,

we get 250 MMSCFD 200 MMSCFD 130 MMSCFD 190 MMSCFD
A ® wpsao © ﬁE
2 o) 0.5 | 0.500 in. wall | 300 psig
] 520 ) 587.112-514.7 s
190 x10° =38.77x21.29 (D)~ 50 MMSCFD 70 MMSCFD 60 MMSCFD
14.7 )| 0.65x520x50x0.85

Solving for the inside diameter D of pipe DE, we get
D =23.79 in.

The nearest standard pipe size is NPS 26 with 0.500 in. wall thickness. This will give
an inside diameter of 25 in., which is slightly more than the required minimum of
23.79 in. calculated above.

The wall thickness required for this pipe diameter and pressure will be dictated by
the pipe material and is the subject of Chapter 6.
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Pipeline with intermediate injections and deliveries

Example 4 (p-102)

A natural gas distribution piping system consists of NPS 12 with 0.250 in. wall thickness, 24 mi long, as
shown in Figure below. At Yale, an inlet flow rate of 65 MMSCFD of natural gas enters the pipeline at
60°F. At the Compton terminus, gas must be supplied at a flow rate of 30 MMSCFD at a minimum
pressure of 600 psig. There are intermediate deliveries of 15 MMSCFD at milepost 10 and 20 MMSCFD
at milepost 18. What is the required inlet pressure at Yale? Use a constant friction factor of 0.01
throughout. The compressibility factor can be assumed to be 0.94. The gas gravity and viscosity are 0.6
and 7 x 107 |b/ft-s, respectively. Assume isothermal flow at 60°F. The base temperature and base
pressure are 60°F and 14.7 psia, respectively.

If the delivery volume at B is increased to 30 MMSCFD and other deliveries remain the same, what
increased pressure is required at Yale to maintain the same flow rate and delivery pressure at
Compton? Neglect elevation differences along the pipeline.

65 MMSCFD NPS 12, 0.250 in. wall thickness 30 MMscFD °°0 P
= MMSC
Yale n?p. - B [mp.100 CTmp 180 m-szfgmpton
A D
L

15 MMSCFD 20 MMSCFD
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Solution:

65 MMSCFD NPS 12, 0.250 in. wall thickness 30 MMsCFD 0 PSid
s MMSC
Inside diameter of pipe = 12.75 — 2 x 0.250 = 12.25 in. Yl 00 C lm_p. 10.0 C hm_p. 6.0 o 2ag "
. A D
Friction factor f= 0.01
15 MMSCFD 20 MMSCFD
2
F=——=20.00
0.01

Using General Flow Equation 2.7, for the last pipe segment from milepost 18 to
milepost 24, we get

30x10% =38.77 x 20.0
14.7 ]| 0.6 x520%6x0.94

0.5
P:-614.7
520 J[ i } (122525

Solving for the pressure at C,

P-=620.88 psia
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Next we will use this pressure P, to calculate the pressure Py for the 8 mi section
of pipe segment BC flowing 50 MMSCEFD.

65 MMSCFD NPS 12, 0.250 in. wall thickness 30 MMSCFD 600 psig
Using General Flow Equation 2.7, Yale Y. B [mp. 100 C | mp 180 m_nggmpton
A D
520 P%_620.882 0> 15 MMSCFD 20 MMSCFD
50x10°=38.77x 20 B x (12.25)*
14.7 J| 0.6 X520 x 8 x 0.94
Py = 643.24 psia
Finally, we calculate the pressure P, at Yale by considering the 10 mi pipe segment
from Yale to point B that flows 65 MMSCFD.
65 MMSCFD NPS 12, 0.250 in. wall thickness 30 MMSCFD 600 psig
043942 0.5 vale m.p. 0.0 B [mp.10.0 Clmp. 180 m_;?zfgmpm”
520 —0643.
65x10° = 38.77:»(20[ ) ‘ X (12.25)* A D
14.7 }| 0.6 x520x10x0.94 15 MMSGED 20 MMSCED

P, = 688.09 psia = 673.39 psig

Therefore, the required inlet pressure at Yale is 673.39 psig.
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When the delivery volume at B is increased from 15 to 30 MMSCED and all other
delivery volumes remain the same, the inlet flow rate at Yale will increase to 65 +
15 = 80 MMSCEFD. If the delivery pressure at Compton is to remain the same as
before, the pressures at B and C will also be the same as calculated before, since the
flow rate in BC and CD are the same as before. Therefore, we can recalculate the

+15 MMSCFD 600 Dsi
65 MMSCFD NPS 12, 0.250 in. wall thickness 30 MMSCED psig
Yalo (pmmm— O Compton
m.p. 0.0 B [m.p.10.0 C[m.p.18.0 m.p. 24.0 P
A D
—+5-MSEFD— 20 MMSCFD
: : : , o 30 MMSCFD (+15)
inlet pressure for the pipe section from Yale to point B considering a flow rate of 80

MMSCED that causes a pressure of 643.24 psia at B.

Using General Flow Equation 2.7, the pressure P, at Yale is

80x10°% =38.77 x 20.0(

520 P*—643.247
14.7 )] 0.6x 520 10 % 0.94

0.5
} x (12.25)%°

P, = 710.07 psia = 695.37 psig

Therefore, increasing the delivery volume at B by 15 MMSCFED causes the pressure
at Yale to increase by approximately 22 psig.
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| Series Piping

In the preceding discussions we assumed the pipeline to have the same diameter throughout its
length. There are situations where a gas pipeline can consist of different pipe diameters connected
together in a series. This is especially true when the different pipe segments are required to
transport different volumes of gas, as shown in Figure 3.5.

In Figure 3.5, section AB with a diameter of 16 in. is used to transport a volume of 100 MMSCFD, and
after making a delivery of 20 MMSCFD at B, the remainder of 80 MMSCFD flows through the 14 in.
diameter pipe BC. At C, a delivery of 30 MMSCFD is made, and the balance volume of 50 MMSCED is
delivered to the terminus D through a 12 in. pipeline CD.

It is clear that the pipe section AB flows the
largest volume (100 MMSCFD), whereas the

pipe segment CD transports the least volume
100 MMSCFD

(50 MMSCEFD). Therefore, segments AB and — 80 MMSCFD 50 MMSCFD
CD, for reasons of economy, should be of [ |
different pipe diameters, as indicated in A T 5 NPS 14 [C NPst2 D
Figure 3.5. If we maintained the same pipe l

diameter of 16 in. from A to D, it would be a \ 30 MMSCED

. . 20 MMSCFD
waste of pipe material and, therefore, cost.

Figure 3.5 Series piping.
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Series Piping

The equivalent length method can be applied when the same uniform flow exists throughout the
pipeline consisting of pipe segments of different diameter, with no intermediate deliveries or
injections.

Consider the same flow rate Q through all pipe segments. The first pipe segment has an inside diameter
D, and length L,, followed by the second segment of inside diameter D, and length L, and so on. We
calculate the equivalent length of the second pipe segment based on the diameter D, such that the
pressure drop in the equivalent length matches that in the original pipe segment of diameter D,. The
pressure drop in diameter D, and length L, equals the pressure drop in diameter D, and equivalent
length Le,. Thus, the second segment can be replaced with a piece of pipe of length Le, and diameter D,.

Similarly, the third pipe segment with diameter D; and length L; will be replaced with a piece of pipe of
Le; and diameter D,. Thus, we have converted the three segments of pipe in terms of diameter D, as
follows:

Segment 1 — diameter D, and length L,
Segment 2 — diameter D, and length Le,
Segment 3 — diameter D, and length Le;

100 MMSCFD L,,D, - Le,, D, (= AP)

H
100 MMSCFD
| | 500 psig
- 8 mi B
- 24 mi
A 12 mi NPS 14 NPS 12

NPS 16

Figure 3.6 Example problem—series piping.
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| Series Piping

| For convenience, we picked the diameter D, of segment 1 as the base diameter to use, to convert from
the other pipe sizes. We now have the series piping system reduced to one constant-diameter (D,) pipe

of total equivalent length given by

Le=L+ Ley+ Le, 3.1)

The pressure required at the inlet of this series piping system can then be
calculated based on diameter D, and length Le. We will now explain how the

equivalent length is calculated.

Upon examining General Flow Equation 2.7, we see that for the same flow rate 7\ p2_pp2 |
and gas properties, neglecting elevation effects, the pressure difference (P2 — P,?) is e= 38'771:(132] {é?TfLZz] e
inversely proportional to the fifth power of the pipe diameter and directly proportional

to the pipe length. Therefore, we can state that, approximately,

CL
v = Y (3.2)
where
AP, = difference in the square of pressures (P;* — P,?) for the pipe segment
C = a constant
L = pipe length
D = pipe inside diameter
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| Series Piping

From Equation 3.2 we conclude that the equivalent length for the same pressure
drop is proportional to the fifth power of the diameter. Therefore, in the series piping
discussed in the foregoing, the equivalent length of the second pipe segment of
diameter D, and length L, is

CL, _ClLe, (33)
D, D/
D 5
or | Le,=1, {—1J (3.4)
DZ

Similarly, for the third pipe segment of diameter D5 and length L, , the equivalent

length 1s
D 5
DS
100 MMSCFD L,,D, —> Le,,D, (=AP)
—> 100 MMSCFD
> _
| 500 psig
: 24 mi 8 mi B
A 12 mi NPS 12
NPS 16 NPS 14
Figure 3.6 Example problem—series piping.
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| Series Piping

Therefore, the total equivalent length Le for all three pipe segments in terms of
diameter D, is

5 5
Le=L +L, [%] +1, (%) (3.6)
2 3

It can be seen from Equation 3.6 that if D, = D,= D,, the total equivalent length
reduces to (L, + L, + L), as expected.

We can now calculate the pressure drop for the series piping system, considering
a single pipe of length Le and uniform diameter D, flowing a constant volume Q.
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Problem

l Example 5

A series piping system, shown in Figure 3.6, consists of 12 mi of NPS 16, 0.375 in.
wall thickness connected to 24 mi of NPS 14, 0.250 in. wall thickness and 8 miles
of NPS 12, 0.250 in. wall thickness pipes. Calculate the inlet pressure required at
the origin A of this pipeline system for a gas flow rate of 100 MMSCFD. Gas is
delivered to the terminus B at a delivery pressure of 500 psig. The gas gravity and
viscosity are 0.6 and 0.000008 1b/ft-s, respectively. The gas temperature is assumed
constant at 60°F. Use a compressibility factor of 0.90 and the General Flow equation
with Darcy friction factor = 0.02. The base temperature and base pressure are 60°F
and 14.7 psia, respectively.

Compare results using the equivalent length method and with the more detailed
method of calculating pressure for each pipe segment separately.

100 MMSCFD
—_—> 100 MMSCFD
500 psig
- 8 mi B
A 12 mi NQ;S”]' . NPS 12
NPS 16

Figure 3.6 Example problem—series piping.
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Solution:

Inside diameter of first pipe segment = 16 — 2 X 0.375 = 15.25 in.

Inside diameter of second pipe segment = 14 — 2 x 0.250 = 13.50 in.

Inside diameter of third pipe segment = 12.75 — 2 X 0.250 = 12.25 in.

5 5
D D
Tle=L+L,| =] + =1 3.6
l Z[DZJ LE‘{D3) ( )
1525 1525 Y
OF Le=12+24x| 222 | 4gx| 2222
135 12.25

or Le=12+44.15+23.92 =80.07 mi

Therefore, we will calculate the inlet pressure P, considering a single pipe from A

to B having a length of 80.07 mi and inside diameter of 15.25 in.

Outlet pressure = 500 + 14.7 = 514.7 psia

© Dr. A.B.M. Toufique Hasan (BUET) L-4 T-1, Dept. of ME

100 MMSCFD L, — Le,

—> 100 MMSCFD

- _ >

| 500 psig
. 8 mi B
A 12mi N NPS 12
NPS 16
Figure 3.6 Example problem—series piping.
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Using General Flow Equation 2.2, neglecting elevation effects and substituting given
values, we get

T PZ _ P2 0.5 ) T P2 P’j 0.5
=77.54| =L L "2 D*>  (USCS units _ Ly || A = h 25 :
Q [ P ) GT, L] ( ) 0 38.77F[Pb ]( Tz ] D*>  (USCS units) (2.4)
0.5
00106 = 77.54( L )( 320 )| (R’ =5147) 159525
Joo2 147 ) 0.6x520%80.07x0.9

P, = 994.77 psia = 980.07 psig

Next, we will compare the preceding result, using the equivalent length method, with
the more detailed calculation of treating each pipe segment separately and adding
the pressure drops.
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0.5

. .. . : L\ A -F 5 :

Consider the 8 mi pipe segment 3 first, since we know the outlet pressure at B is Q=77-54[;J( GIT LZ}J D**  (USCS units)
. . . b

500 psig. Therefore, we can calculate the pressure at the beginning of segment 3 d

using General Flow Equation 2.2, as follows:

100 MMSCFD
0.5 > S 100 MMSCFD
P*—514.7° | @ 500 psi
100x10° = 77.54) ——— | 22 % ) 12.25%° _ 2 — om B
Joo2 N 14.7 )] 0.6x520x8x%0.9 AL g2 NPS 14 NPS 12
Pl = (693.83 psia = 679.13 pSlg Figure 3.6 Example problem—series piping.

Next, consider pipe segment 2 (24 mi of NPS 14 pipe) and calculate the upstream
pressure P, required for a downstream pressure of 679.13 psig, calculated in the
preceding section. Using General Flow Equation 2.2 for pipe segment 2, we get

9 5 0.3 o 100 MMSCFD
| . I 520 (P; —693.83 ) s | — | — > |
100 x 10° = 77.54 13.5% e | 500 psig
J0.02 J\ 147 )] 0.6x520x24x 0.9 B Y ' 8 mi B
A N1P2Sm1|6 NPS 14 NPS 12

Figure 3.6 Example problem—series piping.

P, = 938.58 psia = 923.88 psig
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Next, we calculate the inlet pressure P, of pipe segment 1 (12 mi of NPS 16 pipe)

(USCS units)

for an outlet pressure of 923.88 psig, just calculated. Using the General Flow equation
for pipe segment 1, we get

0.5
| A6 1 520 (32"938-582) os —— 100 MMSCFD
100x 10" =77.54 : 15.25% | R , —
J0.02 N14.7 /| 0.6x520x12x0.9 +_‘. | |. _ :
A stn-;i6 NzFflsnl' . NPS 12

P, =994.75 psia = 980.05 psig

This compares well with the pressure of 980.07 psig we calculated earlier using the
equivalent length method.
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| Parallel Piping

| Sometimes two or more pipes are connected such that the gas flow splits among the branch pipes and
eventually combines downstream into a single pipe, as illustrated in Figure 3.7. Such a piping system is
referred to as parallel pipes. It is also called a looped piping system, where each parallel pipe is
known as a loop.

The reason for installing parallel pipes or loops is
* to reduce pressure drop in a certain section of the pipeline due to pipe pressure limitation or
e forincreasing the flow rate in a bottleneck section.

By installing a pipe loop from B to E, in Figure 3.7 we are effectively reducing the overall pressure drop
in the pipeline from A to F, since between B and E the flow is split through two pipes.

In Figure 3.7 we will assume that the entire pipeline
system is in the horizontal plane with no changes in
pipe elevations. Gas enters the pipeline at A and
flows through the pipe segment AB at a flow rate of C

Q. At the junction B, the gas flow splits into the two Q Q
parallel pipe branches BCE and BDE at the flow rates A B E =
of Q, and Q,, respectively.
At E, the gas flows recombine to equal the initial flow _D, Q,

rate Q and continue flowing through the single pipe .
EF. Figure 3.7
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| Parallel Piping

| In order to calculate the pressure drop due to friction in the parallel piping system, we follow two
main principles of parallel pipes.

* The first principle is that of conservation of flow at any junction point.
 The second principle is that there is a common pressure across each parallel pipe.

Applying the principle of flow conservation, at junction B, the incoming flow into B must exactly equal
the total outflow at B through the parallel pipes. Therefore, at junction B,

Q=0 +0, (3.7)
where < Q,
Q = inlet flow at A q
0, = flow through pipe branch BCE = Q
(), = flow through pipe branch BDE A B E =
D Q,
Figure 3.7
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Parallel Piping

According to the second principle of parallel pipes, the pressure drop in pipe
branch BCE must equal the pressure drop in pipe branch BDE. This 1s due to the
fact that both pipe branches have a common starting point (B) and common ending
point (E). Therefore, the pressure drop in the branch pipe BCE and branch pipe
BDE are each equal to (P, — Pg), where Py and P are the pressures at junctions B
and E, respectively.

Therefore, we can write

C
Q. _Q
A B E F
APpcgp = APppp = Pg — Pg (3.3) —D’“Qz
Figure 3.7

AP represents pressure drop, and APy 1s a function of the diameter and length
of branch BCE and the flow rate (,. Similarly, AP, 1s a function of the diameter
and length of branch BDE and the flow rate Q,.
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| Parallel Piping

The pressure drop due to friction in branch BCE can be calculated from

2 p2 0.5
Q=38.77F[§’](P] Pz] D**  (USCS units)

K,LO; , )\ GT,1Z
(P3-P2)= G (3.10)
Dy
where

K, = a parameter that depends on gas properties, gas temperature, etc. 5

L, = length of pipe branch BCE ] - &

D, = inside diameter of pipe branch BCE — _Q,
0, = flow rate through pipe branch BCE A B E E

Similarly, the pressure drop due to friction in branch BDE is calculated from

2
% (3.11)

(PBZ_PEE)z D>
2

where
K, = a constant like K,
L, = length of pipe branch BDE
D, = inside diameter of pipe branch BDE
(), = flow rate through pipe branch BDE
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| Parallel Piping

In Equation 3.10 and Equation 3.11, the constants K, and K, are equal, since
they do not depend on the diameter or length of the branch pipes BCE and BDE.
Combining both equations, we can state the following for common pressure drop
through each branch:

D D <@

Simplifying further, we get the following relationship between the two flow rates

O, and Q;:

0 _ {Lz] | [D] | (3.13)
O L D,
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| Parallel Piping

Another method of calculating pressure drops in parallel pipes is using the equivalent diameter.

In this method, we replace the pipe loops BCE and BDE with a
certain length of an equivalent diameter pipe that has the same
pressure drop as one of the branch pipes.

The equivalent diameter pipe can be calculated using the General

. : . : : C
Flow equation, as explained next. The equivalent pipe with the Q aQ
same AP that will replace both branches will have a diameter D, A B EF
and a length equal to one of the branch pipes, say L.. D,

T W

Since the pressure drop in the equivalent diameter pipe, which
flows the full volume Q, is the same as that in any of the branch
pipes, from Equation 3.10, we can state the following:

(P} —P2)= KegZQE

(3.14)

where Q = (0, + O, from Equation 3.7 and K, represents the constant for the
equivalent diameter pipe of length L, flowing the full volume Q.
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| Parallel Piping

Equating the value of (Py* — P/*) to the corresponding values, considering each
branch separately, we get, using Equation 3.10, Equation 3.11, and Equation 3.14:

JKYIL'IQIQ — KZLZQE — KeLeQz (315)
D; D; D;
Kt
9, _Q,
Also, setting K; = K, = K, and L, = L, we simplify Equation 3.15 as follows: A B E F
D

LO} LG} _ L’
D, D, D

(3.16)

Using Equation 3.16 in conjunction with Equation 3.7, we solve for the equi-
valent diameter D, as

1/5

2
D, =D, (1+COH5I1J (3.17)

where

5
Constl = \/[D]] [Lz] (3.18)
D,) \ L
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| Parallel Piping

and the individual flow rates O, and Q, are calculated from

0, = QConstl (3.19) = O
1+ Const1 Q. Q.
A B E F
D, Q,
0
= 3.20
2 1+ Constl ( )
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Problem

|
| Example 7

A gas pipeline consists of two parallel pipes, as shown in Figure 3.7. It is designed to
operate at a flow rate of 100 MMSCED. The first pipe segment AB is 12 miles long
and consists of NPS 16, 0.250 in. wall thickness pipe. The loop BCE is 24 mi long and
consists of NPS 14, 0.250 in. wall thickness pipe. The loop BDE 1s 16 miles long and
consists of NPS 12, 0.250 in. wall thickness pipe. The last segment EF is 20 miles long
and consists of NPS 16, 0.250 in. wall thickness pipe. Assuming a gas gravity of 0.6,
calculate the outlet pressure at F and the pressures at the beginning and the end of the
pipe loops and the flow rates through them. The inlet pressure at A = 1200 psig. The
gas flowing temperature = 80°F, base temperature = 60°F, and base pressure =

14.73 psia. The compressibility factor Z = 0.92. Use the General Flow equation with
Colebrook friction factor f= 0.015.

Figure 3.7
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| Solution:

From Equation 3.13, the ratio of the flow rates through the two pipe loops is given by

0, (16)°( 14-2x025 )~ ' od; Q:(Lz](g] .13

0, \24) (1275-2%x025) > ) AP
and from Equation 3.7

O, + 0,= 100

Solving for Q, and Q,, we get

Q, =51.0MMSCFD ——Q

Q, = 49.0MMSCFD Q Q

A B E F
D

Figure 3.7

© Dr. A.B.M. Toufique Hasan (BUET) L-4 T-1, Dept. of ME ME 423: Fluids Engineering (Jan. 2024) 34



Next, considering the first pipe segment AB, we will calculate the pressure at B based

upon the inlet pressure of 1200 psig at A, using General Flow Equation 2.2, as follows:

: 0.5
' 1214.73% — P2
100%10° = 77.54 ! 220 ( 2 ) 15.5%°
Joois N 14.73 )| 0.6x540x12%0.92

Solving for the pressure at B, we get
P, = 1181.33 psia = 1166.6 psig (PB)

This is the pressure at the beginning of the looped section at B. Next we calculate
the outlet pressure at E of pipe branch BCE, considering a flow rate of 51 MMSCFD
through the NPS 14 pipe, starting at a pressure of 1181.33 psia at B.

Using the General Flow equation, we get

BCE: 0.5

1181.332—p?
51%10% = 77.54 1 220 ( 2 ) 13.5%°
J0.015 N 14.73 )] 0.6x540%24%0.92

Solving for the pressure at E, we get

P, = 1145.63 psia = 1130.9 psig (PE)

C
Q
A B
D Q,
Figure 3.7
T Q1
Q.
A B
D Q,
Figure 3.7
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Next, we use this pressure as the inlet pressure for the last pipe segment EF and
calculate the outlet pressure at F using the General Flow equation, as follows:

EF:

0.5

1145.632 — P2
100 % 10° = 77.54| - >20 ( 2 ) 15.5%5
J0.015 )\ 14.73 )| 0.6x540x20%0.92

Solving for the outlet pressure at F, we get

P, = 1085.85 psia = 1071.12 psig (PF) Q
A B
_ D, Q

Figure 3.7

Check the solution of the problem using

“equivalent pipe” method

(Homework)
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Hydraulic Pressure Gradient

The hydraulic pressure gradient is a graphical representation of the gas pressures along the pipeline,
as shown in Figure 3.9. The horizontal axis shows the distance along the pipeline starting at the
upstream end. The vertical axis depicts the pipeline pressures.

Since pressure in a gas pipeline is 1000 psig
nonlinear compared to liquid

pipelines, the hydraulic gradient for
a gas pipeline appears to be a
slightly curved line instead of a
straight line.

800 psig

Pressure

The slope of the hydraulic gradient O —__ Ok
at any point represents the Distance

pressure loss due to friction per
unit length of pipe.

Figure 3.9 Hydraulic pressure gradient for uniform flow.

If the flow rate through the pipeline is a constant value
(no intermediate injections or deliveries) and pipe size
is uniform throughout, the hydraulic gradient appears
to be a slightly curved line, as shown in Figure 3.9,
with no appreciable breaks.
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Hydraulic Pressure Gradient

If there are intermediate deliveries or injections along the pipeline, the hydraulic gradient will be a
series of broken lines, as indicated in Figure 3.10.

\f\

Pressure

Q _— :

Distance
i:::!1 Q 2 Qg

\4 \4

Figure 3.10 Hydraulic pressure gradient for deliveries and injections.

A similar broken hydraulic gradient can also be seen in the case of a pipeline with variable pipe
diameters and wall thicknesses, even if the flow rate is constant. Unlike liquid pipelines, the breaks in
hydraulic pressure gradient are not as conspicuous in gas pipelines.

In a long-distance gas pipeline, due to limitations of pipe pressure, intermediate compressor stations
will be installed to boost the gas pressure to the required value so the gas can be delivered at the
contract delivery pressure at the end of the pipeline.
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Pressure Regulators

© Dr. A.B.M. Toufique Hasan (BUET)

In a long-distance gas pipeline with intermediate delivery points, there may be a need to regulate the
gas pressure at certain delivery points in order to satisfy the customer requirements.

Suppose the pressure at a delivery point is 800 psig, whereas the customer requirement is only 500
psig. Obviously, some means of reducing the gas pressure must be provided so that the customer
can utilize the gas for his or her requirements at the correct pressure. This is achieved by means of a
pressure regulator that will ensure a constant pressure downstream of the delivery point,
regardless of the pressure on the upstream side of the pressure regulator.

The flow rate from A to B is 100 MMSCFD, with an
inlet pressure of 1200 psig at A. At B, gas is
delivered into a branch line BE at the rate of 30
MMSCFD. The remaining volume of 70 MMSCED is
delivered to the pipeline terminus C at a delivery
pressure of 600 psig. Based on the delivery
pressure requirement of 600 psig at C and a
takeoff of 30 MMSCFD at point B, the calculated
pressure at B is 900 psig. Starting with 900 psig on
the branch line at B, at 30 MMSCFD, gas is
delivered to point E at 600 psig. If the actual
requirement at E is only 400 psig, a pressure
regulator will be installed at E to reduce the
delivery pressure by 200 psig.

L-4 T-1, Dept. of ME

400 psig
E

Pressure

regulator \D 600 psig>P . atE

30 MMSCFD

100 MMSCFD
70 MMSCFD
O O
A B
1200 psig 900 psig

Fig. Pressure regulation

ME 423: Fluids Engineering (Jan. 2024)

(O C 600 psig
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Problem

Example 9

A natural gas pipeline, NPS 16, 0.250 in. wall thickness, 50 mi long, with a branch pipe (NPS 8, 0.250 in.
wall thickness, 15 mi long), as shown in Figure 3.13, is used to transport 100 MMSCFD gas (gravity =
0.6 and viscosity = 0.000008 Ib/ft-s) from A to B. At B (milepost 20), a delivery of 30 MMSCFD occurs
into the branch pipe BE. The delivery pressure at E must be maintained at 300 psig. The remaining
volume of 70 MMSCED is shipped to the terminus C at a delivery pressure of 600 psig. Assume a
constant gas temperature of 60°F and a pipeline efficiency of 0.95. The base temperature and base
pressure are 60°F and 14.7 psia, respectively. The compressibility factor Z = 0.88.

a) Using the Panhandle A equation, calculate the inlet pressure required at A.
b) Is a pressure regulator required at E?

c) If the inlet flow at A drops to 60 MMSCFD, what is the impact in the branch pipeline BE if the flow
rate of 30 MMSCFD is maintained?

300 psig

NPS 8 30 MMSCFD

100 MMSCFD
—_—

O O
A NPS 16 B

70 MMSCFD
—_—

() C 600 psig
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Solution:

300 psig
D,s = Dy =16—2x0.25=15.5 in. (NPS16, 0.25 in. wall thickness) - R
>
Dge = Dgp =8.625-2x0.25=8.125 in. (NPS8, 0.25in. wall thickness) D %
NPS 8 YWMMSCFD
Panhandle A equation in USCS units (neglecting elevation effects): ? NPS 16 C 600 psig
20 mi 30 mi

T 1.0788 P2 P2 0.5394
Q= 435.87E[—b] L2 D>

Pb (30.85391'f LZ

BC pipeline:

. 0.539%4
70x10° = 435.87(0 95)( 00+ 46()}1 0788[ i (0L j (15.5)21%2

14.7 0.6%%* (60 + 460)(30)(0.88)

— P, =660.39 psia=645.69psig (=P,)
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300 psig

AB pipeline: p
Y

(d

1.0788 2 2 0.5394
100x10° = 435.87(0.95)(60 i 460) m— iy —660.99 (15.5)201 NPSe w”‘”‘s‘?m
14.7 0.6%%°* (60 + 460)(20)(0.88)
100 MMSCFD 70 MMSCFD
. . NPS 16 () C 600 psig

— P, = 715.08 psia=700.38psig (=P,) Ans. (a) A RS B 0 mi

BE pipeline:

1.0788 2 p2 0.5394 300 psig
30x10° = 435.87(0.95)[ 00+ 460) - 8539660'39 i (8.125) %% -
14.7 0.6°%% (60 + 460)(15)(0.88)
NMMSCFD
— P, =544.90 psia=530.2psig (=P;) >P,, atE which is 300 psig 100 MMSCED
70 MMSCFD
(,E? NPS 16 E () C 600 psig
20 mi 30 mi

Since the required delivery pressure at E is 300 psig, a pressure
regulator is required to be installed at E.

Ans. (b)
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(c) If the inlet flow at A drops to 60 MMSCFD, what is the impact in the branch pipeline BE if the flow
rate of 30 MMSCFD is maintained?

300 psig
E
K
z,.
NPS 8 30 MMSCFD
60 MMSCFD 30 MMSCED
—+oe-HSEFB—
—FoMMoorn
_ it
BC pipeline: O X O ( C 600 psig
20 mi 30 mi

60+ 460 1.0788 p2 _ (600—|—14.7)2 0.5394
30x10° = 435.87(0.95)( j 1 (15.5)202
14.7 0.6°%% (60 + 460)(30)(0.88)

= P, = 624.47 psia=609.77 psig (=P;)

BE pipeline:

60+ 460 1.0788 624 472 _ P2 0.5394
30x10° = 435.87(0.95)( j o 2 (15.5)261¢2
14.7 0.6°%% (60 + 460)(L5)(0.88)

— P, =500.76 psia=486.06psig (=P:) >P,, atE whichis 300 psig

Still a pressure regulator will be required to
be installed at E at this new flow conditions.
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